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New Exact Ground States for One-Dimensional
Quantum Many-Body Systems
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We consider one-dimensional quantum many-body systems with pair interac-
tions in external fields and (re)investigate the conditions under which exact
ground-state wave functions of product type can be found. Contrary to a claim
in the literature that an exhaustive list of such systems is already known, we
show that this list can still be enlarged considerably. In particular, we are able
to calculate exact ground-state wave functions for a class of quantum many-
body systems with Ax&2+Bx2 interaction potentials and external potentials
given by sixth-order polynomials.

KEY WORDS: Ground state; wave functions of product type; Calogero�
Sutherland systems.

1. INTRODUCTION

A large amount of attention has been devoted to the properties of several
types of exactly solvable interacting one-dimensional quantum many-body
systems. This is mostly due to the fact that such systems and their classical
counterparts show up in a large number of physical problems which seem
to be rather disparate at first glance. To point out only a few of them, we
mention the connection to random matrix theory, (1) the description of
one-dimensional Wigner crystals, (2, 3) and the theory of Heisenberg spin
chains.(4, 5) For a more extensive list of such problems��covering topics of
field theory as well��see, e.g., the introduction of ref. 6 and the literature
given there.

In this paper we are concerned with the particular problem of finding
and classifying interacting one-dimensional quantum many-body systems
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with exact ground-state wave functions of product type. Sutherland(7) was
the first to point out that a ground-state wave function of the form

9(x1 ,..., xN )= `
1�i< j�N

/(xi&xj ); /(&x)=\/(x) (1.1)

is an eigenfunction of a many-particle Hamiltonian with pair interactions
only, i.e.,

H=&
�2

2m
:
N

i=1

�2

�x2
i

+
1
2

:
N

i, j=1
i{ j

W(x i&x j ) (1.2)

whenever the (necessarily odd) logarithmic derivative

.(x)=/$(x)�/(x) (1.3)

satisfies the functional equation

.(x) .( y)+.( y) .(z)+.(z) .(x)

= f (x)+ f ( y)+ f (z) for x+ y+z=0 (1.4)

The interaction potential W is then given by

W(x)=
�2

m
(.$(x)+.2(x)&(N&2) f (x))+const. (1.5)

The general meromorphic solution of the above functional equation has
been found by Calogero(8) and reads

.(x)=:`(x; g2 , g3)+;x; (1.6)

f (x)=&
1
2 {:2 d`

dx
(x; g2 , g3)+:2`2(x; g2 , g3)+;2x2+2:;x`(x; g2 , g3)=

(1.7)

Here, `(x; g2 , g3) denotes the Weierstra? zeta function(9) with power series
expansion

`(x; g2 , g3)=
1
x

&
g2

22 } 3 } 5
x3&

g3

22 } 5 } 7
x5+O(x7) (1.8)
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On a more general level one can then deal with the question whether there
are systems with ground-state wave functions of the type

9(x1 ,..., xN )= `
N

i=1

_(xi ) `
1�i< j�N

/(x i&xj ); /(&x)=\/(x) (1.9)

that are exact eigenfunctions of Hamiltonians of the form

H=&
�2

2m
:
N

i=1

�2

�x2
i

+ :
N

i=1

V(x i )+
1
2

:
N

i, j=1
i{ j

W(xi&xj ) (1.10)

Generalizing Calogero's considerations, Inozemtsev and Meshcheryakov(10)

were able to make up a list of such systems and even claimed it to be
exhaustive. However, as Forrester recently pointed out, (3) this last state-
ment cannot be correct. The Hamiltonian and the corresponding exact
ground-state wave function employed in ref. 3 for the description of a one-
dimensional Wigner solid have the form given in equations (1.10) and (1.9)
but nevertheless do not show up in the above-mentioned list!

This observation most obviously shows the necessity of a reexamina-
tion of the arguments given by Inozemtsev and Meshcheryakov. This will
be one of the topics of the present paper. In Section 2 it is pointed out
where the reasoning in ref. 10 turns out to be too restrictive and how it can
be generalized. In the following sections we then show how to construct a
whole class of new Hamiltonians of the form (1.10) with exact eigenfunc-
tions of type (1.9). In particular, we demonstrate that it is possible to
calculate exact ground-state wave functions for several quantum many-
body systems with interaction potentials W(x)=Ax&2+Bx2 and external
potentials V(x) that are given by sixth-order polynomials. Furthermore, it
will turn out that Forrester's example of ref. 3 is also covered by our new
class of Hamiltonians.

2. THE INOZEMTSEV�MESHCHERYAKOV FUNCTIONAL
EQUATION AND ITS GENERALIZATION

We do not intend to repeat the considerations of ref. 10 in every detail
here, but restrict ourselves to the necessary minimum of steps. Inserting H
from (1.10), 9 from (1.9), and using the obvious identity

1
9

�29
�x2

k

=
�

�xk \
1
9

�9
�xk++\ 1

9
�9
�xk+

2

(2.1)
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we get

H9=:
i _V(xi )&

�2

2m
{$(xi )&

�2

2m
{2(x i )& 9

+
1
2

:
i{ j _W(xi&xj )&

�2

m
.$(x i&xj )& 9&

�2

2m
:
i \ :

j
j{i

.(xi&x j )+
2

9

&
�2

2m
:

i{ j

1
2

.(xi&xj )({(xi )&{(xj )) 9 (2.2)

where we introduced the logarithmic derivatives

.(x)=/$(x)�/(x), {(x)=_$(x)�_(x) (2.3)

We are interested in wave functions 9 for which (2.2) is reducible to the
eigenvalue equation H9=E9 by a proper choice of V and W. This can be
achieved, if the third and the fourth term on the r.h.s. of (2.2) can be rewritten
as sums of one- and�or two-particle potentials. The third term is well-known
from the case of vanishing external potential V. It reduces to a sum of two-
particle potentials, if we assume the functional equation (1.4) to hold:

:
i \ :

j
j{i

.(xi&x j )+
2

= :
i{ j

(.2(x i&xj )&(N&2) f (x i&xj )) (2.4)

Inozemtsev and Meshcheryakov(10) then in addition required the validity of
the functional equation

.(x& y)({(x)&{( y))=*(x)+*( y) (2.5)

and managed to determine its solutions.
The introduction of (2.5) indeed leads to solutions of the original

problem, as the fourth term on the r.h.s. of (2.2) then reduces to a sum of
one-particle potentials. However, at this point we can already demonstrate
why the class of solutions in ref. 10 turns out to be too restrictive. The
requirement of (2.5) is by no means necessary! A reduction to a sum of
two-particle potentials via

.(x& y)({(x)&{( y))=F(x& y); F(x)=F(&x) (2.6)

would also do the job. Even more general is the case where the last term
on the r.h.s. of (2.2) can be written as a sum of one-particle plus a sum of
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two-particle potentials. This can be achieved by employing the functional
equation

.(x& y)({(x)&{( y))=*(x)+*( y)+F(x& y); F(x)=F(&x) (2.7)

instead of (2.5) or (2.6), since

:
i{ j

1
2 .(xi&xj )({(xi )&{(xj ))=(N&1) :

i

*(xi )+ 1
2 :

i{ j

F(xi&xj ) (2.8)

in this case. Thus, given the validity of (1.4) and (2.7), Eq. (2.2) can be cast
into the form

H9=:
i _V(x i )&

�2

2m
({$(xi )+{2(xi )+(N&1) *(xi ))& 9

+
1
2

:
i{ j _W(xi&xj )&

�2

m
.$(x i&x j )&

�2

m
.2(xi&xj )

+
�2

m
(N&2) f (x i&xj )&

�2

2m
F(xi&xj )& 9 (2.9)

Here one can immediately read off the choices that have to be made for V
and W in order to achieve the desired equation H9=E9.

The results obtained so far can thus be summed up as follows:

Proposition 1. Given a Hamiltonian H of the form (1.10) and a
wave function 9 of type (1.9), the following requirements are sufficient for
the eigenvalue equation H9=E9 to hold:

(a) The logarithmic derivatives .=/$�/ and {=_$�_ are solutions of
the functional equations

.(x) .( y)+.( y) .(z)+.(z) .(x)

= f (x)+ f ( y)+ f (z) for x+ y+z=0 (2.10)

.(x& y)({(x)&{( y))

=*(x)+*( y)+F(x& y), F(x)=F(&x) (2.11)

(b) The one- and two-particle potentials V and W are given by

V(x)=
�2

2m
({$(x)+{2(x)+(N&1)*(x))+

E1

N
(2.12)

W(x)=
�2

m
(.$(x)+.2(x)&(N&2) f (x)+

1
2

F(x))+
2(E&E1)
N(N&1)

(2.13)
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3. SOLUTION OF THE GENERALIZED FUNCTIONAL EQUATION

In this section we deal with the question how the solutions of the
functional equation system (2.10)�(2.11) can be found. As was already
mentioned in the introduction, the general meromorphic solution of (2.10)
is given by(8)

.(x)=:`(x; g2 , g3)+;x (3.1)

To solve (2.11) we now apply the methods used in refs. 8 and 10 for
the solutions of the functional equations (1.4) and (2.5). In particular, we
shall derive ordinary differential equations for { or * alone which are
among a couple of necessary conditions for the functional equation (2.11)
to hold. In a next step, a class of possible solutions .(x) is determined. In
some cases it will turn out to be only a subclass of the functions given by
(3.1) due to restrictions which have to be imposed upon the parameters
g2 , g3 . Subsequently, the general solution of the differential equation for {
is given. Finally it is pointed out that the functions .(x) and {(x) traced
out by the above strategy are already solutions of (2.11).

To arrive at physically meaningful expressions, we require { and * both
to be nonsingular and sufficiently smooth. Furthermore, it turns out to be
advantageous to investigate the cases *=const. and *{const. separately.

3.1. The Case *=*0=const

For constant *=*0 , (2.11) reduces to

.(x& y)({(x)&{( y))=2*0+F(x& y) (3.2)

Making the special choice y=x+=, we get

.(=)({(x+=)&{(x))=2*0+F(=) (3.3)

Differentiation with respect to x then leads to {$(x+=)&{$(x)=0, or

{$(x)=const. (3.4)

Inserting the general solution {(x)={1+{2 x into the original functional
equation (2.11), we see that it is satisfied with *=*0 and F(x)={2x.(x)&2*0 .
Thus we have shown:

Proposition 2. The functional equation system (2.10)�(2.11) is
solved by

.(x)=:`(x; g2 , g3)+;x; {(x)={1+{2x (3.5)
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with

*=*0=const.; F(x)={2 x(:`(x; g2 , g3)+;x)&2*0 (3.6)

3.2. The Case *=*(x){const

For *(x){const. we again start with writing down (2.11) for the
special choice y=x+= and with . given by (3.1):

.(=)({(x+=)&{(x))=*(x+=)+*(x)+F(=) (3.7)

Both sides of this expression are now expanded into a power series in =
up to order =6 and subsequently a comparison of coefficients is carried
through.

Since F is even, we can write

F(=)=F0+F2 =2+F4=4+F6=6+O(=8) (3.8)

Furthermore, from (3.1) and (1.8), one has

.(=)=: \1
=

&
g2

22 } 3 } 5
=3&

g3

22 } 5 } 7
=5++;=+O(=7) (3.9)

In addition we have of course to employ the Taylor expansions of { up to
seventh and of * up to sixth order.

In zeroth order the comparison of coefficients leads to

:{$(x)=2*(x)+F0 (3.10)

Since *(x){const., this implies :{0. (3.10) can therefore be used in the
following as a tool for replacing derivatives {(n)(x) with derivatives
*(n&1)(x) and vice versa.

Comparison of the first order coefficients yields

:
2

{"(x)=*$(x) (3.11)

This is automatically satisfied whenever (3.10) is valid.
In second order we are led to

:
6

{$$$(x)+;{$(x)=
1
2

*"(x)+F2 (3.12)
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Using (3.10), we thus get

*"(x)&12
;
:

*(x)=6 \;
:

F0&F2+ (3.13)

and

{$$$(x)&12
;
:

{$(x)=&
12
:

F2 (3.14)

These are the already proclaimed differential equations for * and { alone.
The third order again leads to nothing new, as insertion of (3.10)

implies

*$$$(x)&12
;
:

*$(x)=0 (3.15)

which is satisfied due to (3.13).
After some manipulations, the fourth order gives rise to the equation

_12 \;
: +

2

& g2& *(x)=
1
2

F0 \ g2&12 \;
: +

2

++30F4+6
;
:

F2 (3.16)

Since * is nonconstant, this equation can only be satisfied, if

g2=12 \;
:+

2

(3.17)

and subsequently leads to a relation between F4 and F2 :

F4=&
;
5:

F2 (3.18)

By employing the above results, it can be shown that the equation corre-
sponding to the fifth order is again automatically satisfied.

The sixth order yields

_\12
;2

:2&
7
6

g2+ 12
;
:

&3g3 & *(x)

=
3
2

g3 F0+210F6&6 \F0

;
:

&F2+\12
;2

:2&
7
6

g2+ (3.19)
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With *{const. and after elimination of g2 with the aid of (3.17), this leads
to

g3=&8 \;
: +

3

(3.20)

and

F6=&
1

105 \
;
: +

2

F2 (3.21)

As the parameters g2 , g3 are already fixed by (3.17) and (3.20), the
class of functions .(x) is now reduced to

.(x)=:` \x; 12 \;
: +

2

, &8 \;
: +

3

++;x (3.22)

A degenerate case of the Weierstra? zeta function shows up here, (9) and we
can rewrite (3.22) as follows:

:# cot(#x) for
;
:

<0

.(x)={:
x

for
;
:

=0, #=�3 } ;: } (3.23)

:# coth(#x) for
;
:

>0

The class of functions {(x) is limited by (3.14). The general solution of this
differential equation is given by

{1 cos(2#x)+{2 sin(2#x)+{3+{4x for
;
:

<0

{(x)={{1+{2x+{3x2+{4x3 for
;
:

=0, #=�3 } ;: }
{1 cosh(2#x)+{2 sinh(2#x)+{3+{4x for

;
:

>0 (3.24)

Note that there is the following connection between F2 and {4 :

F2=;{4 for
;
:

{0; F2=&
:
2

{4 for
;
:

=0 (3.25)
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If one now inserts the expressions (3.23) and (3.24) for . and { into the
functional equation (2.11), one sees that it is already fulfilled, that is, we
have

Proposition 3. The functional equation system (2.10)�(2.11) is
solved by .(x) given by (3.23) and {(x) given by (3.24).

As we do not want to overburden the paper, we refrain from giving
the corresponding expressions for *(x) and F(x) explicitly.

Remark. The solutions of the functional equation (2.5) can be
recovered from the results of this subsection by putting {4=0.

4. DISCUSSION

The results of the previous section lead to a couple of new
Hamiltonians H of the form (1.10) and wave functions 9 of product type
(1.9) which obey the eigenvalue equation H9=E9. However, not all of
these results are physically meaningful, as it sometimes may happen that
we are led to functions 9 that are not square-integrable and thus cannot
be interpreted as eigenfunctions. This problem has always to be discussed
for the concrete particular case under study.

To carry through such a discussion at least for one of the most inter-
esting special cases, let us consider the functions

.(x)=
:
x

(4.1)

{(x)={1+{2x+{3 x2+{4 x3 (4.2)

This corresponds to the choice ;�:=0 in (3.23) and (3.24).
Inserting (4.1) and (4.2) into the l.h.s. of the functional equation

(2.11), we get

({(x)&{( y)).(x& y)=:
{2(x& y)+{3(x2& y2)+{4(x3& y3)

x& y

=: \{2+{3(x+ y)+{4 \3
2

x2+
3
2

y2&
1
2

(x& y)2++
(4.3)
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It is immediately read off that * and F can be chosen as

*(x)=: \1
2

{2+{3x+
3
2

{4 x2+ (4.4)

F(x)=&
:
2

{4x2 (4.5)

Inserting (4.2) and (4.4) into (2.12), one immediately recognizes that the
external potential V(x) is given by a certain sixth order polynomial. Proper
choice of the parameters leads to a whole bunch of interesting��symmetric
as well as nonsymmetric��double and triple well potentials here.

Furthermore, from (2.10) one can find out that f (x)=0 for .(x)=:�x.
Together with (4.1), (4.5) this leads via (2.13) to the following interaction
potential:

W(x)=
�2

m {:(:&1)
x2 &

:{4

4
x2=+const. (4.6)

Integrating the logarithmic derivatives {=_$�_ and .=/$�/, we finally
arrive at the following expressions for the factors from which the wave
function 9 is built up:

/(x)=C1 |x|:; _(x)=C2 exp \{1x+
{2

2
x2+

{3

3
x3+

{4

4
x4+ ;

(4.7)

C1 , C2=const.

Square integrability of 9 at infinity can be ensured by putting {4<0.
Moreover, as 9 turns out to be nodeless outside the hyperplanes
xi&xj=0, it can be regarded as ground state.(11, 12)

Remark. For {4=0 we are not furnished with anything new, as
square integrability of 9 can only be achieved in this case, if we require
{3=0, {2<0. The external potential V is then reduced to a harmonic well,
and the corresponding system is already well-known.(12)

We now conclude this paper by pointing out in which of the above
new classes of solutions one can find Forrester's (counter-)example from
ref. 3. To this end we start with the solutions . and { from Proposition 2
in Subsection 3.1 above, i.e.,

.(x)=:`(x; g2 , g3)+;x ; {(x)={1+{2x (4.8)
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Putting {1=0 and making the transition to the degenerate case where

g2=12 \;
:+

2

, g3=&8 \ ;
: +

3

,
;
:

>0 (4.9)

we are led to (cf. (3.22), (3.23))

.(x)=: �3
;
:

coth \�3
;
:

x+ , {(x)={2x (4.10)

Choosing {2<0 for integrability reasons, we exactly end up with the type
of solutions discussed by Forrester.
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